Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Neurobiol Stress ; 26: 100563, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37654512

RESUMO

Postpartum depression (PPD) is a major psychiatric complication of childbirth, affecting up to 20% of mothers, yet remains understudied. Mitochondria, dynamic organelles crucial for cell homeostasis and energy production, share links with many of the proposed mechanisms underlying PPD pathology. Brain mitochondrial function is affected by stress, a major risk factor for development of PPD, and is linked to anxiety-like and social behaviors. Considering the importance of mitochondria in regulating brain function and behavior, we hypothesized that mitochondrial dysfunction is associated with behavioral alterations in a chronic stress-induced rat model of PPD. Using a validated and translationally relevant chronic mild unpredictable stress paradigm during late gestation, we induced PPD-relevant behaviors in adult postpartum Wistar rats. In the mid-postpartum, we measured mitochondrial function in the prefrontal cortex (PFC) and nucleus accumbens (NAc) using high-resolution respirometry. We then measured protein expression of mitochondrial complex proteins and 4-hydroxynonenal (a marker of oxidative stress), and Th1/Th2 cytokine levels in PFC and plasma. We report novel findings that gestational stress decreased mitochondrial function in the PFC, but not the NAc of postpartum dams. However, in groups controlling for the effects of either stress or parity alone, no differences in mitochondrial respiration measured in either brain regions were observed compared to nulliparous controls. This decrease in PFC mitochondrial function in stressed dams was accompanied by negative behavioral consequences in the postpartum, complex-I specific deficits in protein expression, and increased Tumor Necrosis Factor alpha cytokine levels in plasma and PFC. Overall, we report an association between PFC mitochondrial respiration, PPD-relevant behaviors, and inflammation following gestational stress, highlighting a potential role for mitochondrial function in postpartum health.

2.
Am J Hypertens ; 36(10): 542-550, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439351

RESUMO

BACKGROUND: The resolution of inflammation is an active phenomenon important for switching off inflammatory processes once the harmful stimuli are removed and facilitate the return to homeostasis. Specialized pro-resolving mediators (SPMs), such as lipoxin A4, resolvin D1, and resolvin E1, derived from ω-3 or ω-6 polyunsaturated fatty acids, are crucial for the resolution of inflammation. We hypothesized that SPMs are decreased in hypertension which contributes to the acetylcholine-induced contraction in resistance arteries, which are well known to be mediated by leukotrienes and prostaglandins. Moreover, treatment with SPMs will decrease this contraction via formyl peptide receptor-2 (FPR-2) in resistance arteries from spontaneously hypertensive rats (SHR). METHODS AND RESULTS: We performed a comprehensive eicosanoid lipid panel analysis, and our data showed for the first time that precursors of SPMs are decreased in SHR, limiting the production of SPMs and resolution of inflammation in vivo. This phenomenon was associated with an increase in lipid peroxidation in resistance arteries. Although SPMs did not abolish acetylcholine-induced contraction, these lipid mediators improved endothelial function in arteries from SHR via FPR-2 activation at nanomolar concentrations. SPMs also buffered TNF-α-induced reactive oxygen species generation in endothelial cells from C57Bl/6 mice. CONCLUSIONS: We suggest that FPR-2 and SPMs could be revealed as a new target or therapeutic agent to improve vascular function in arteries from hypertensive rats.


Assuntos
Acetilcolina , Receptores de Formil Peptídeo , Animais , Camundongos , Ratos , Ácidos Docosa-Hexaenoicos/farmacologia , Células Endoteliais , Inflamação , Mediadores da Inflamação
3.
Front Physiol ; 14: 1140989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324378

RESUMO

Introduction: There is a great increase in uterine arterial blood flow during normal pregnancy, which is a result of the cardiovascular changes that occur in pregnancy to adapt the maternal vascular system to meet the increased metabolic needs of both the mother and the fetus. The cardiovascular changes include an increase in cardiac output and more importantly, dilation of the maternal uterine arteries. However, the exact mechanism for the vasodilation is not fully known. Piezo1 mechanosensitive channels are highly expressed in endothelial and vascular smooth muscle cells of small-diameter arteries and play a role in structural remodeling. In this study, we hypothesize that the mechanosensitive Piezo1 channel plays a role in the dilation of the uterine artery (UA) during pregnancy. Methods: For this, 14-week-old pseudopregnant and virgin Sprague Dawley rats were used. In isolated segments of UA and mesenteric resistance arteries (MRA) mounted in a wire myograph, we investigated the effects of chemical activation of Piezo1, using Yoda 1. The mechanism of Yoda 1 induced relaxation was assessed by incubating the vessels with either vehicle or some inhibitors or in the presence of a potassium-free physiological salt solution (K+-free PSS). Results: Our results show that concentration-dependent relaxation responses to Yoda 1 are greater in the UA of the pseudo-pregnant rats than in those from the virgin rats while no differences between groups were observed in the MRAs. In both vascular beds, either in virgin or in pseudopregnant, relaxation to Yoda 1 was at least in part nitric oxide dependent. Discussion: Piezo1 channel mediates nitric oxide dependent relaxation, and this channel seems to contribute to the greater dilation that occurs in the uterine arteries of pseudo-pregnant rats.

4.
Am J Hypertens ; 36(9): 471-480, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37148218

RESUMO

Cytomegalovirus (CMV) is a member of the ß-herpesviruses and is ubiquitous, infecting 50%-99% of the human population depending on ethnic and socioeconomic conditions. CMV establishes lifelong, latent infections in their host. Spontaneous reactivation of CMV is usually asymptomatic, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with several cardiovascular and post-transplant diseases (stroke, atherosclerosis, post-transplant vasculopathy, and hypertension). Herpesviruses, including CMV, encode viral G-protein-coupled receptors (vGPCRs) that alter the host cell by hijacking signaling pathways that play important roles in the viral life cycle and these cardiovascular diseases. In this brief review, we discuss the pharmacology and signaling properties of these vGPCRs, and their contribution to hypertension. Overall, these vGPCRs can be considered attractive targets moving forward in the development of novel hypertensive therapies.


Assuntos
Doenças Cardiovasculares , Infecções por Citomegalovirus , Hipertensão , Humanos , Citomegalovirus/metabolismo , Transdução de Sinais , Infecções por Citomegalovirus/epidemiologia , Receptores Acoplados a Proteínas G/metabolismo
5.
Front Physiol ; 14: 998951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846322

RESUMO

Piezo1 channel is a sensor for shear-stress in the vasculature. Piezo1 activation induces vasodilation, and its deficiency contributes to vascular disorders, such as hypertension. In this study, we aimed to determine whether Piezo1 channel has a functional role in the dilation of pudendal arteries and corpus cavernosum (CC). For this, male Wistar rats were used, and the relaxation of the pudendal artery and CC was obtained using the Piezo1 activator, Yoda1, in the presence and absence of Dooku (Yoda1 antagonist), GsMTx4 (non-selective mechanosensory channel inhibitor) and L-NAME (nitric oxide synthase inhibitor). In the CC, Yoda1 was also tested in the presence of indomethacin (non-selective COX inhibitor) and tetraethylammonium (TEA, non-selective potassium channel inhibitor). The expression of Piezo1 was confirmed by Western blotting. Our data show that Piezo1 activation leads to the relaxation of the pudendal artery and CC as the chemical activator of Piezo1, Yoda1, relaxed the pudendal artery (47%) and CC (41%). This response was impaired by L-NAME and abolished by Dooku and GsMTx4 in the pudendal artery only. Indomethacin and TEA did not affect the relaxation induced by Yoda1 in the CC. Limited tools to explore this channel prevent further investigation of its underlying mechanisms of action. In conclusion, our data demonstrate that Piezo1 is expressed and induced the relaxation of the pudendal artery and CC. Further studies are necessary to determine its role in penile erection and if erectile dysfunction is associated with Piezo1 deficiency.

6.
Geroscience ; 45(3): 1411-1438, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36823398

RESUMO

Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid ß (Aß) peptides. These peptides give rise to small, toxic, and soluble Aß oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aß peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Humanos , Peptídeos beta-Amiloides/metabolismo , Agregados Proteicos , Estresse do Retículo Endoplasmático/fisiologia
7.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232616

RESUMO

This study was designed to connect aortic stiffness to vascular contraction in young male and female Wistar rats. We hypothesized that female animals display reduced intrinsic media-layer stiffness, which associates with improved vascular function. Atomic force microscopy (AFM)-based nanoindentation analysis was used to derive stiffness (Young's modulus) in biaxially (i.e., longitudinal and circumferential) unloaded aortic rings. Reactivity studies compatible with uniaxial loading (i.e., circumferential) were used to assess vascular responses to a selective α1 adrenergic receptor agonist in the presence or absence of extracellular calcium. Elastin and collagen levels were indirectly evaluated with fluorescence microscopy and a picrosirius red staining kit, respectively. We report that male and female Wistar rats display similar AFM-derived aortic media-layer stiffness, even though female animals withstand higher aortic intima-media thickness-to-diameter ratio than males. Female animals also present reduced phenylephrine-induced aortic force development in concentration-response and time-force curves. Specifically, we observed impaired force displacement in both parts of the contraction curve (Aphasic and Atonic) in experiments conducted with and without extracellular calcium. Additionally, collagen levels were lower in female animals without significant elastin content and fragmentation changes. In summary, sex-related functional differences in isolated aortas appear to be related to dissimilarities in the dynamics of vascular reactivity and extracellular matrix composition rather than a direct response to a shift in intrinsic media-layer stiffness.


Assuntos
Elastina , Rigidez Vascular , Agonistas Adrenérgicos , Animais , Cálcio , Espessura Intima-Media Carotídea , Colágeno , Feminino , Masculino , Fenilefrina/farmacologia , Ratos , Ratos Wistar
8.
Life Sci ; 310: 121079, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243117

RESUMO

AIMS: Vascular dysfunction is a clinical hallmark of diabetes. While various pathways drive vascular alterations in diabetes, many gaps persist in understanding this process. Heat-shock protein 70 (HSP70) has a long-recognized role in diabetes, but the contributions of HSP70 to the diabetic vasculature remain largely unknown. MAIN METHODS: We determined the systemic and local (aorta) levels of HSP70 in control (CTL) and streptozotocin (STZ)-induced diabetic rats. Functional studies were conducted in a wire myograph in the presence or absence of a pharmacological inhibitor for HSP70 (VER155008). Calcium (Ca2+) dynamics was indirectly evaluated as a function of change in force development in vehicle and VER-treated vessels, as well as in the presence of inhibitors for voltage-dependent and -independent plasmalemmal Ca2+ channels. Furthermore, mimicking the extracellular diabetic environment, we exposed aortic rings to serum from CTL and STZ-induced animals, which contains higher levels of HSP70, as well as to purified recombinant HSP70. Then, we performed functional studies following the modulation of Toll-like receptor 4 (TLR4) and its co-adaptor MD2, which interact with HSP70. KEY FINDINGS: HSP70 plays a dual role in diabetes-induced vascular dysfunction: intracellular (i)HSP70 affects Ca2+ handling mechanisms, and extracellular (e)HSP70 modulates the TLR4-MD2 complex. SIGNIFICANCE: These newly discovered roles of HSP70 push forward the field of vascular biology and open research avenues for other diseased states associated with altered vascular responses.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Ratos , Cálcio , Proteínas de Choque Térmico HSP70/metabolismo , Estreptozocina , Receptor 4 Toll-Like/metabolismo
9.
Biomolecules ; 12(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009019

RESUMO

Aging impairs the expression of HSP70, an emergent player in vascular biology. However, it is unknown if age-related alterations in HSP70 are linked to a decline in arterial function. In this study, we test the hypothesis that the contributions of HSP70 to vascular contraction are diminished in middle-aged animals. We determined the basal levels of HSP70 in the aorta of young and middle-aged Sprague Dawley male rats using Western blotting. Functional studies were performed in a wire myograph system. Force development in response to phenylephrine was assessed in the presence or absence of extracellular calcium (Ca2+), and in aortic rings treated or non-treated with an HSP70 inhibitor. Fluorescent probes were used to evaluate vascular oxidative stress and nitric oxide levels. We report that middle-aged rats have significantly lower levels of HSP70. Blockade of HSP70 attenuated vascular phasic and tonic contraction in isolated aortas. It appears that a functional HSP70 is required for proper Ca2+ handling as inhibition of this protein led to reduced force-displacement in response to Ca2+ dynamics. Furthermore, middle-aged aortic rings exposed to the HSP70 inhibitor display higher reactive oxygen species levels without changes in nitric oxide. In summary, we show that middle-aged animals have lower levels of HSP70 in aortas, which associates with an age-related decline in vascular responses to α-1 adrenergic stimulation.


Assuntos
Aorta , Óxido Nítrico , Animais , Aorta/metabolismo , Proteínas de Choque Térmico HSP70 , Masculino , Óxido Nítrico/metabolismo , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley
12.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R319-R325, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107023

RESUMO

Hypertension is a primary risk factor for the development of cardiovascular disease. Mechanisms controlling blood pressure (BP) in men and women are still being investigated; however, there is increasing evidence supporting a role for the innate immune system. Specifically, Toll-like receptors (TLRs), and TLR4 in particular, have been implicated in the development of hypertension in male spontaneously hypertensive rats (SHR). Despite established sex differences in BP control and inflammatory markers in hypertensive males and females, little is known regarding the role of TLR4 in hypertension in females. Our hypotheses were that male SHR have greater TLR4 expression compared with females, and that sex differences in TLR4 contribute to sex differences in BP and the T cell profile. To test these hypotheses, initial studies measured renal TLR4 protein expression in 13-wk-old male and female SHR. Additional SHR were implanted with telemetry devices and randomized to treatment with either IgG or TLR4 neutralizing antibodies. Untreated control male SHR have greater TLR4 protein expression in the kidney compared with females. However, treatment with TLR4 neutralizing antibody for 2 wk did not significantly alter BP in either male or female SHR. Interestingly, neutralization of TLR4 increased renal CD3+ T cells in female SHR, with no alteration in CD4+ T cells or CD8+ T cells in either sex. Taken together, our data indicate that although male SHR have greater renal TLR4 expression than females, TLR4 does not contribute to the higher BP and more proinflammatory renal T cell profile in males versus females.


Assuntos
Hipertensão , Caracteres Sexuais , Animais , Pressão Sanguínea/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Rim/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Receptor 4 Toll-Like/metabolismo
13.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769116

RESUMO

People living with hypertension have a higher risk of developing heart diseases, and hypertension remains a top cause of mortality. In hypertension, some detrimental changes occur in the arterial wall, which include physiological and biochemical changes. Furthermore, this disease is characterized by turbulent blood flow, increased fluid shear stress, remodeling of the blood vessels, and endothelial dysfunction. As a complex disease, hypertension is thought to be caused by an array of factors, its etiology consisting of both environmental and genetic factors. The Mosaic Theory of hypertension states that many factors, including genetics, environment, adaptive, neural, mechanical, and hormonal perturbations are intertwined, leading to increases in blood pressure. Long-term efforts by several investigators have provided invaluable insight into the physiological mechanisms responsible for the pathogenesis of hypertension, and these include increased activity of the sympathetic nervous system, overactivation of the renin-angiotensin-aldosterone system (RAAS), dysfunction of the vascular endothelium, impaired platelet function, thrombogenesis, vascular smooth muscle and cardiac hypertrophy, and altered angiogenesis. Exosomes are extracellular vesicles released by all cells and carry nucleic acids, proteins, lipids, and metabolites into the extracellular environment. They play a role in intercellular communication and are involved in the pathophysiology of diseases. Since the discovery of exosomes in the 1980s, numerous studies have been carried out to understand the biogenesis, composition, and function of exosomes. In this review, we will discuss the role of exosomes as intercellular messengers in hypertension.


Assuntos
Comunicação Celular , Exossomos/metabolismo , Hipertensão/metabolismo , Animais , Biomarcadores/metabolismo , Humanos
15.
Am J Physiol Heart Circ Physiol ; 321(1): H77-H111, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989082

RESUMO

The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.


Assuntos
Artérias/fisiologia , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Veias/fisiologia , Animais , Endotélio Vascular/fisiologia , Microscopia/métodos , Miografia/métodos , Reprodutibilidade dos Testes
16.
Front Physiol ; 12: 666696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967836

RESUMO

Heat-shock protein 70 (HSP70) contributes to cellular calcium (Ca2+) handling mechanisms during receptor-mediated vascular contraction. Interestingly, previous studies have independently reported sex-related differences in HSP70 expression and Ca2+ dynamics. Still, it is unknown if sex, as a variable, plays a role in the impact that HSP70 has upon vascular contraction. To narrow this gap, we investigated if differences exist in the expression levels of HSP70 in the aorta, and if targeting this protein contributes to sex disparity in vascular responses. We report that, compared with male animals, female rats present a reduction in the basal levels of HSP70. More compelling, we found that the blockade of HSP70 has a greater impact on phenylephrine-induced phasic and tonic vascular contraction in female animals. In fact, it seems that the inhibition of HSP70 significantly affects vascular Ca2+ handling mechanisms in females, which could be associated with the fact that these animals have impaired HSP70 expression. Corroborating this idea, we uncovered that the higher sensitivity of female rats to HSP70 inhibition does not involve an increase in NO-dependent vasodilation nor a decrease in vascular oxidative stress. In summary, our findings reveal a novel mechanism associated with sex-specific differences in vascular responses to α-1 adrenergic stimulation, which might contribute to unraveling the network of intertwined pathways conferring female protection to (cardio)vascular diseases.

17.
Circ Res ; 128(7): 969-992, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793333

RESUMO

Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hipertensão/fisiopatologia , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Envelhecimento/fisiologia , Senilidade Prematura/fisiopatologia , Animais , Morte Celular , Sobrevivência Celular , Senescência Celular , Dano ao DNA , Modelos Animais de Doenças , Humanos , Hipertensão/etiologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Estresse Mecânico , Resposta a Proteínas não Dobradas
19.
Vascul Pharmacol ; 140: 106861, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33845201

RESUMO

The virus responsible for the coronavirus disease of 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidences suggest that COVID-19 could trigger cardiovascular complications in apparently healthy patients. Coronaviruses are enveloped positive-strand RNA viruses acting as a pathogen-associated molecular pattern (PAMP)/ danger-associated molecular patterns (DAMP). Interestingly, Toll-like receptor (TLR) 3 recognize both PAMPs DAMPs and is activated by viral double-stranded RNA (dsRNA) leading to activation of TIR receptor domain-containing adaptor inducing IFN-ß (TRIF) dependent pathway. New evidence has shown a link between virus dsRNA and increased BP. Hence, we hypothesize that COVID-19 infection may be over activating the TLR3 through dsRNA, evoking further damage to the patients, leading to vascular inflammation and increased blood pressure, favoring the development of several cardiovascular complications, including hypertension.


Assuntos
COVID-19/genética , COVID-19/patologia , Hipertensão/genética , RNA de Cadeia Dupla/genética , Receptor 3 Toll-Like/genética , Animais , Humanos , Hipertensão/patologia , Hipertensão/virologia , Camundongos , SARS-CoV-2/patogenicidade , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...